*1.
*2.
*3.
*4,
*5.

#1.
#2.
#3.
#4.
#5.

*1.
*2.
*3.
*4,
*5.

#1.
#2.
#3.
#4.
#5.

*1.
*2.
*3.
*4,
*5.

#1.
#2.
#3.
#4.
#5.

*1.
*2.

{c}odeBetter

Rise above the rest
401, Shekhar Central, Palasia Square, Indore, MP - 452001

www.codebetter.in

+91 88230 75444
+91 9993928766

Data Structure

Section 1 — Array

Write a program to find the sum of all elements in an array.

Write a program to find the largest and smallest elements in an array.
Write a program to remove duplicates from an array.

Write a program to reverse an array in-place.

Write a program to check if an array is sorted in ascending order.

Write a program to find the second largest element in an array.

Write a program to find the common elements between two arrays.
Write a program to merge two sorted arrays into a single sorted array.
Write a program to rotate an array by a given number of positions.
Write a program to find the missing number in a given array of integers.

Section 2 — Two-Dimensional Array

Write a program to find the sum of all elements in a two-dimensional array.
Write a program to calculate the transpose of a matrix.

Write a program to multiply two matrices.

Write a program to find the largest element in each row of a matrix.

Write a program to check if a given matrix is symmetric.

Write a program to find the saddle point in a matrix.

Write a program to sort the elements of a matrix in ascending order.
Write a program to find the sum of the diagonals in a matrix.

Write a program to find the number of rows and columns in a matrix.
Write a program to check if two matrices are equal.

Section 3 — Stack

Write a program to implement a stack using an array.
Write a program to reverse a string using a stack.

Write a program to check if a given expression has balanced parentheses using a stack.

Write a program to convert an infix expression to postfix using a stack.
Write a program to evaluate a postfix expression using a stack.

Write a program to implement a stack using a linked list.

Write a program to reverse a linked list using a stack.

Write a program to convert a decimal number to binary using a stack.
Write a program to check if a given string is a palindrome using a stack.
Write a program to implement the Tower of Hanoi problem using a stack.

Section 4 — Queue

Write a program to implement a queue using an array.
Write a program to implement a circular queue using an array.

http://www.codebetter.in/

*3.

*4,
*5.

#1.
#2.
#3.
#4.
#5.

*1,
*2,
*3,
*4,
*5,

#1.
#2.
#3.
#4.
#5.

*1.
*2.
*3.
*4,
*5.

#1.
#2.
#3.
#4.
#5.

*1.
*2.
*3.
*4,
*5.

#1.
#2.
#3.
#4.
#5.

*1.

Write a program to reverse the elements of a queue.
Write a program to implement a queue using a linked list.
Write a program to implement a priority queue using a heap.

Write a program to simulate a printer queue using a queue.

Write a program to implement a double-ended queue (deque) using a doubly linked list.
Write a program to implement a circular buffer using a queue.

Write a program to check if a given string is a palindrome using a queue.

Write a program to generate the binary numbers from 1 to n using a queue.

Write a program to create and display a singly linked list.

Write a program to insert an element at the beginning of a singly linked list.
Write a program to insert an element at the end of a singly linked list.

Write a program to delete the first occurrence of an element in a singly linked list.
Write a program to reverse a singly linked list.

Write a program to find the middle element of a singly linked list.

Write a program to create and display a doubly linked list.

Write a program to insert an element at the beginning of a doubly linked list.
Write a program to insert an element at the end of a doubly linked list.

Write a program to delete the last occurrence of an element in a doubly linked list.

Write a program to calculate the factorial of a number using recursion.
Write a program to find the nth Fibonacci number using recursion.

Write a program to calculate the sum of digits of a number using recursion.
Write a program to find the GCD of two numbers using recursion.

Write a program to calculate the power of a number using recursion.

Write a program to reverse a string using recursion.

Write a program to generate all possible subsets of a set using recursion.
Write a program to find the number of ways to climb n stairs using recursion.
Write a program to solve the Tower of Hanoi problem using recursion.

Write a program to check if a string is a palindrome using recursion.

Write a program to search for an element in an array using sequential search.

Write a program to search for an element in a sorted array using binary search.

Write a program to find the first and last occurrences of a number in an array using binary search.
Write a program to search for an element in a two-dimensional array using binary search.

Write a program to search for a substring in a string using sequential search.

Write a program to count the occurrences of a word in a given text using sequential search.

Write a program to search for a file in a directory using sequential search.

Write a program to find the maximum and minimum elements in an array using sequential search.
Write a program to search for a pattern in a DNA sequence using sequential search.

Write a program to search for a given key in a binary search tree.

Write a program to sort an array of integers using bubble sort.

*2. Write a program to sort an array of integers using merge sort.
*3. Write a program to sort an array of integers using heap sort.
*4. Write a program to sort an array of integers using selection sort.
*5. Write a program to sort an array of strings using bubble sort.

#1. Write a program to sort an array of strings using merge sort.

#2. Write a program to sort an array of strings using heap sort.

#3. Write a program to sort an array of strings using selection sort.

#4. Write a program to sort a two-dimensional array of integers using bubble sort.
#5. Write a program to sort a two-dimensional array of integers using merge sort.

*1. Write a program to solve the N-Queens problem using backtracking.
*2. Write a program to generate all permutations of a string using backtracking.

#1. Write a program to solve the Sudoku puzzle using backtracking.
#2. Write a program to solve the Knapsack problem using backtracking.
#3. Write a program to generate all possible combinations of a set of numbers using backtracking.

*1. Write a program to solve the Fractional Knapsack problem using a greedy algorithm.
*2. Write a program to solve the Activity Selection problem using a greedy algorithm.

#1. Write a program to find the minimum number of coins needed to make a change using a greedy
algorithm.

#2. Write a program to solve the Huffman coding problem using a greedy algorithm.

#3. Write a program to solve the Job Scheduling problem using a greedy algorithm.

*1. Write a program to build a max heap from an array of integers.

*2. Write a program to build a min heap from an array of integers.

*3. Write a program to insert an element into a max heap.

*4. Write a program to delete the root element from a max heap.

*5. Write a program to extract the minimum element from a min heap.

#1. Write a program to merge two max heaps into a single max heap.

#2. Write a program to check if a binary tree is a max heap.

#3. Write a program to find the kth largest element in an array using a min heap.
#4. Write a program to sort an array of integers using a heap sort algorithm.

#5. Write a program to implement a priority queue using a heap data structure.

*1. Write a program to construct a binary tree from a given array representation and perform an inorder
traversal to display its elements.

*2. Write a program to check if two binary trees are identical, i.e., they have the same structure and same
values at corresponding positions.

*3. Write a program to find the height of a binary tree.

*4. Write a program to perform a rotation in an AVL tree, either left rotation or right rotation.

*5. Implement a program to delete a node from an AVL tree while maintaining balance.

*6.
*T.

*8.

#1.
#2.
#3.
#4.
#5.
#6.

#7.
#8.

*1.

*2.

*3.

#1.

#2.

*1.
*2.
*3.
#1.

#2.

Write a program to check if a given binary tree is height-balanced or not.

Write a program to find the diameter of a binary tree, which is the longest path between any two
leaf nodes.

Write a program to check if a binary tree is a perfect binary tree.

Implement a program to find the maximum value in a binary tree iteratively, without using recursion.
Implement a program to count the number of leaf nodes in a binary tree.

Implement an AVL tree and write a program to perform an insertion operation, ensuring the tree
remains balanced.
Write a program to sort an array of integers using a heap sort algorithm.
Write a program to find the minimum value in an AVL tree.

Implement a program to convert an AVL tree into a balanced binary search tree.

Implement a program to convert an unbalanced binary tree into a balanced binary tree.

Implement a program to perform a right rotation on an unbalanced binary tree to make it balanced.

Implement Dijkstra's algorithm to find the shortest path between two vertices in a weighted directed
graph.

Implement Kruskal's algorithm to find the minimum spanning tree (MST) of a weighted undirected
graph.

Implement the Floyd-Warshall algorithm to find the shortest paths between all pairs of vertices in a
weighted directed graph.

Write a program to find the minimum spanning tree (MST) of a weighted undirected graph using
Prim's algorithm.
Write a program to detect cycles in a directed graph using depth-first search (DFS).

Write a program to solve the Fibonacci sequence using dynamic programming.
Write a program to solve the 0/1 knapsack problem using dynamic programming.
Write a program to calculate the nth term of the Pascal's triangle using dynamic programming.

Implement a program to find the longest common subsequence (LCS) of two given strings using
dynamic programming.

Implement the coin change problem using dynamic programming to find the minimum number of
coins required to make a given sum.

